If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1786x-40=0
a = 1; b = 1786; c = -40;
Δ = b2-4ac
Δ = 17862-4·1·(-40)
Δ = 3189956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3189956}=\sqrt{4*797489}=\sqrt{4}*\sqrt{797489}=2\sqrt{797489}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1786)-2\sqrt{797489}}{2*1}=\frac{-1786-2\sqrt{797489}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1786)+2\sqrt{797489}}{2*1}=\frac{-1786+2\sqrt{797489}}{2} $
| 3√10x2√15= | | 6.2n–3.7n=85+45 | | √x+31=x+1 | | a-0.18=-0.47 | | n/4-5=3 | | p-0.69=-2.13 | | 4.7=y+6.39 | | 7(1+p)-1=3p-2+4(p+2 | | (-10)=w-32+6 | | -4/6=x+2/12 | | x+10*24=246 | | -9w-4=3(-2-3w | | x(x-15)=1 | | N-15=13-6n | | (-7)=8-50+x | | n/5+4=-6 | | -91=7(x-5 | | n/3-8=1 | | 5t+(1-3t)=19 | | F(x)=2x^2+16x-20 | | 3=2x-3=15 | | 4m^2+98=22 | | 3d-11÷4=3÷2 | | (x/2.5=1.4 | | 18-(-4)/2+(-6)(3)=x | | 3.2=(x/2.5)=4.6 | | 2x+(15/3)=20 | | X2+4x+4=1 | | 2(x*12)=3x+24-x | | -6(n-5=66 | | 7/3+x=3/5 | | 2+1/3+x=3/5 |